Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1439-1446, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37097472

RESUMO

The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Closteroviridae , Vitis , Doenças das Plantas , Análise Espectral
2.
J Chem Theory Comput ; 12(1): 188-200, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26653409

RESUMO

Multicomponent systems are defined as chemical systems that require a quantum mechanical description of two or more different types of particles. Non-Born-Oppenheimer electron-nuclear interactions in molecules, electron-hole interactions in electronically excited nanoparticles, and electron-positron interactions are examples of physical systems that require a multicomponent quantum mechanical formalism. The central challenge in the theoretical treatment of multicomponent systems is capturing the many-body correlation effects that exist not only between particles of identical types (electron-electron) but also between particles of different types (electron-nuclear and electron-hole). In this work, the development and implementation of multicomponent coupled-cluster (mcCC) theory for treating particle-particle correlation in multicomponent systems are presented. This method provides a balanced treatment of many-particle correlation effects in a general multicomponent system while maintaining a size-consistent and size-extensive formalism. The coupled-cluster ansatz presented here is an extension of the electronic structure CCSD formulation for multicomponent systems and is defined as |ΨmcCC⟩ = eT1I+T2I+T1II+T2II+T11I,II+T12I,II+T21I,II+T22I,II|0I0II⟩. The cluster amplitudes in the mcCC wave function were obtained by projecting the mcCC Schrödinger equation onto a direct product space of singly and doubly excited states of type I and II particles and then solving the resulting mcCC equations iteratively. These equations were derived using an automated application of the generalized Wick's theorem and were implemented using a computer-assisted source code generation approach. The applicability of the mcCC method was demonstrated by calculating ground state energies of multicomponent Hooke's atom and positronium hydride systems as well as by calculating exciton and biexciton binding energies in multiexcitonic systems. For each case, the mcCC results were benchmarked against full configuration interaction (FCI) calculations and were found to be in excellent agreement with the FCI results. The effect of neglecting certain classes of multicomponent connected excitation terms from the mcCC wave function was also investigated. The results from this study demonstrate that connected cluster operators that generate simultaneous excitation in type I and type II space are critical for capturing electron-hole correlation in multiexcitonic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...